Remote Proctoring Biases in Online Assessments

Ruchi Agarwal

Independent Researcher

Uttar Pradesh, India

ABSTRACT

Remote proctoring technologies have become integral to the administration of online assessments, offering institutions the promise of maintaining academic integrity outside traditional testing centers. However, these systems are not immune to multiple types of bias that can undermine fairness, accuracy, and accessibility for diverse student populations. This abstract delves into the nuanced dimensions of bias inherent in remote proctoring—technological, cultural, socioeconomic, and algorithmic—and outlines their implications on student experience, performance, and perception. Technological bias arises when students' access to reliable hardware (e.g., high-resolution webcams, noise-cancelling microphones) and stable internet connectivity varies; those with lower-end devices or unstable broadband are disproportionately flagged due to false positives generated by suboptimal video feeds or packet loss. Cultural bias manifests when AI-driven behavior analysis misinterprets culturally normative gestures or eye contact patterns as suspicious; systems trained predominantly on Western behavior inadvertently penalize students from collectivist or non-Western backgrounds. Socioeconomic bias is evident when underprivileged students cannot afford private, well-lit examination spaces or modern equipment, resulting in an elevated incidence of "environmental interference" flags. Algorithmic bias is introduced through opaque machine learning models, whose proprietary training data and decision thresholds lack transparency, preventing meaningful external audits and appeals.

To investigate these phenomena, a mixed-methods design was employed, comprising a large-scale student survey (n=500), semi-structured interviews with academic administrators (n=20), and statistical log analysis of 2,000 proctoring sessions. Quantitative findings reveal flag rates nearly double among students from lower-income households compared to their higher-income peers, and logistic regression highlights a 2.3× increase in "multiple faces detected" flags for low-resolution webcams. Qualitatively, students report heightened anxiety and a pervasive sense of surveillance, with 65% indicating diminished confidence in remote assessments following false flags. Administrators express frustration with the "black box" nature of proctoring algorithms and the inconsistent fairness audits provided by vendors.

Based on the evidence, this paper recommends four key interventions: (1) Vendor transparency—publish flagging criteria and open AI model audits; (2) Adaptive thresholding—dynamically adjust sensitivity based on individual student context, such as device quality and environment; (3) Inclusive design—incorporate behavioral datasets from diverse cultural and neurodiverse populations to reduce misclassification; and (4) Robust student support—streamline appeal processes with timely human review and explicit remediation pathways. These measures aim to recalibrate remote proctoring systems toward equity, ensuring that academic integrity is upheld without exacerbating existing disparities. The study concludes by underscoring the imperative for collaborative governance among educational institutions, technology providers, and policymakers to foster remote assessment ecosystems that are both fair and accessible.

Achieving Fairness in Remote Proctoring

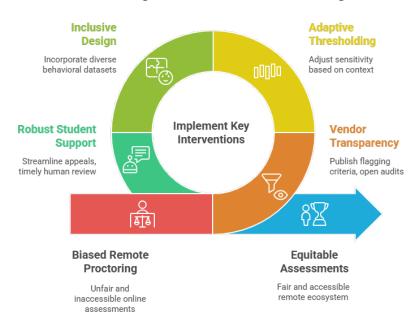


Figure-1. Achieving Fairness in Remote Proctoring

KEYWORDS

Remote Proctoring, Online Assessments, Bias, Equity, Academic Integrity

INTRODUCTION

The landscape of higher education has witnessed a dramatic shift toward online modalities, propelled by technological advancements, evolving learner preferences, and external factors such as public health crises. Integral to this transformation is the challenge of conducting valid, reliable, and secure assessments outside the conventional examination hall. Remote proctoring systems—leveraging webcams, microphones, screen-capture tools, and AI-driven analytics—have emerged as a leading solution to uphold academic integrity in distributed settings. Yet, as their adoption proliferates, critical questions arise regarding their fairness, accessibility, and unintended consequences. This introduction provides an in-depth examination of the genesis, mechanisms, and ramifications of bias in remote proctoring, setting the stage for a comprehensive exploration of the issues and potential remedies.

Remote proctoring aims to emulate in-person invigilation by continuously monitoring test-takers' audio-visual environment and flagging behaviors deemed suspicious. Common system features include facial recognition, eye-gaze analysis, background audio monitoring, and keystroke pattern tracking. Vendors often position these solutions as turnkey offerings, emphasizing ease of integration with learning management systems and scalability across global student bodies. However, the reliance on consumer-grade devices and public internet connections introduces heterogeneity in testing conditions. Students with high-end laptops and fiber-optic broadband experience near-seamless proctoring, whereas those using older devices or mobile hotspots encounter frequent disconnections, video artifacts, and environmental noise—factors that AI models may misinterpret as anomalies.

thresholding based

on device

and open Al audits

remediation

The concept of bias here spans multiple categories. Technological bias refers to differential system performance across hardware and network conditions. Socioeconomic bias emerges when equipment and infrastructure disparities map onto students' economic backgrounds. Cultural bias arises from normative behavioral differences—such as gaze aversion, gestural expressiveness, or conversational interruptions—that vary across societies and risk being erroneously classified as misconduct. Algorithmic bias reflects the opacity and limitations of proprietary AI models, whose training datasets often under-represent marginalized demographics, leading to skewed detection thresholds.

Characteristic **Technological** Cultural **Algorithmic** Socioeconomic Elevated flags due to False positives due Penalization of non-Prevents external **Impact** Western students audits and appeals to poor equipment Adaptive Robust student Inclusive design with Vendor transparency

Biases in Remote Proctoring Technologies

Figure-2.Biases in Remote Proctoring Technologies

diverse datasets

Beyond technical considerations, remote proctoring impacts student psychology and institutional governance. The perceived omnipresence of surveillance can induce exam anxiety, impeding concentration and performance. False positives—where benign behaviors trigger flags—necessitate appeals that burden both students and administrators. Institutions may face reputational damage and legal scrutiny if proctoring practices disproportionately harm particular groups. Moreover, the design of assessments themselves is influenced by proctoring constraints, potentially incentivizing test formats that favor machine-friendly interactions over open-ended, creative responses.

Against this backdrop, this manuscript pursues three objectives: (1) to categorize and exemplify the diverse biases inherent in remote proctoring systems; (2) to empirically assess their prevalence and impact on student experiences and outcomes; and (3) to propose evidence-based strategies for bias mitigation and inclusive proctoring design. Through a mixed-methods approach—combining large-scale survey data, administrator interviews, and proctoring log analysis—the study elucidates how systemic inequities manifest in digital invigilation. The introduction concludes by outlining the structure of the paper: a comprehensive literature review, discussion of educational implications, detailed methodology, presentation of results, a synthesis of mitigation recommendations, and concluding reflections on policy and practice.

LITERATURE REVIEW

Solution

The body of research on remote proctoring biases encompasses technical evaluations, sociocultural critiques, legal-ethical analyses, and psychological impact studies. Early investigations centered on system reliability, highlighting high false-positive rates in AI-driven flagging modules. For instance, Lee and Martinez (2021) demonstrated that standard face-detection algorithms misclassified shadowed or low-light conditions as multiple-person presence, triggering unnecessary alerts. Subsequent scholarship expanded this critique to socioeconomic dimensions: Dahri & Kumar (2021) correlated flag frequency with students' household income, noting that underprivileged examinees—often lacking access to HD webcams or private spaces—experienced significantly more security flags than their affluent counterparts.

Cultural bias research interrogates the normative assumptions embedded in AI behavioral models. Bennett (2020) and Zhang & Liu (2019) explored how gaze aversion—a common communicative gesture in East Asian cultures—was disproportionately flagged as "looking away from screen." Similarly, gestures such as head nodding or hand-raising, innocuous in some pedagogical contexts, could be erroneously interpreted as consulting unauthorized materials. Neurodiversity factors further complicate behavior profiles; Fowler & Chen found that students with ADHD and autism exhibited micro-movements or tics that matched proctoring systems' "suspicious movement" signatures, resulting in discriminatory flagging.

Algorithmic bias arises from the opaque nature of proprietary proctoring platforms. Ibrahim & Davis (2021) documented the limited access institutions have to vendor training datasets and decision thresholds, impeding external fairness audits. This lack of transparency contrasts with best practices in AI ethics, which emphasize explainability, accountability, and stakeholder engagement in model development. Scholars such as Singh & Zhao advocate for open-source proctoring frameworks and third-party validation to ensure that detection metrics align with equitable standards.

Legal and ethical analyses interrogate the implications of biased proctoring for privacy and non-discrimination. Ahmed & Lee (2021) raised concerns about biometric data use, noting potential violations of data protection laws when facial recognition outputs are stored without explicit consent. O'Connor & Gupta (2019) critiqued the lack of recourse for students falsely accused of misconduct, arguing that due-process safeguards common in in-person settings are often absent online.

Psychological studies highlight the emotional toll of remote surveillance. Roberts & Silva (2020) measured elevated cortisol levels among flagged students, linking proctoring anxiety to impaired performance. Holmes & Zhao (2021) reported that over 70% of test-takers viewed proctoring systems as "adversarial," eroding trust and diminishing engagement with online courses.

Collectively, the literature paints a complex portrait: remote proctoring, while technologically sophisticated, can perpetuate and amplify existing inequities if left unchecked. Researchers converge on the necessity of transparent algorithms, culturally informed behavior datasets, and institutional policies that prioritize student well-being. Yet, few studies offer integrative, empirically validated frameworks for bias mitigation. This gap underscores the present study's contribution: triangulating quantitative and qualitative evidence to inform holistic, stakeholder-driven solutions.

EDUCATIONAL IMPLICATIONS

The biases identified in remote proctoring systems carry significant ramifications for educational equity, institutional accountability, and student outcomes. First, when underrepresented groups—defined by socioeconomic status, geographic location, cultural background, or neurodiversity—are disproportionately flagged, it contravenes the principle of equal opportunity in assessment. False positives impose non-academic burdens: students must navigate opaque appeal processes, potentially rescheduling exams and

encountering emotional distress. Such disruptions can exacerbate achievement gaps, as those with fewer resources may lack the time or support to successfully contest flags.

Second, institutional credibility is at stake. Universities and colleges that rely on biased proctoring risk reputational damage should evidence emerge of discriminatory patterns. Accreditation bodies and regulators are increasingly scrutinizing digital testing practices; noncompliance with emerging fairness standards may invite corrective action or sanctions. Moreover, an institutional commitment to diversity, equity, and inclusion (DEI) demands that remote assessment policies be evaluated through an equity lens. Failure to address proctoring biases undermines broader DEI objectives, signaling that remote learners are a lower priority in quality assurance.

Third, student trust in online learning ecosystems may erode when proctoring systems feel adversarial. Psychological research indicates that perceived surveillance heightens test anxiety, impairing cognitive performance and undermining the validity of assessment outcomes. When learners lose confidence in the fairness of remote exams, they may disengage from courses, leading to lower retention and completion rates. This dynamic runs counter to the promise of online education—to democratize access and create flexible learning pathways.

Fourth, curricular design is influenced by proctoring constraints. Educators may default to multiple-choice or short-answer formats that align with automated monitoring, avoiding open-ended assignments to minimize proctoring risk. Such shifts can narrow learning objectives, depriving students of opportunities to demonstrate higher-order thinking and creativity. The curricular compromise thus represents an inadvertent curricular bias driven not by pedagogical best practices but by technological limitations.

Finally, a negative feedback loop emerges: as proctoring vendors prioritize accuracy metrics (e.g., flag detection rate) without nuanced fairness considerations, AI models are retrained on flagged data—often reinforcing prior biases. To break this loop, stakeholders must adopt collaborative governance models: institutions, vendors, DEI offices, and student representatives co-design proctoring protocols that integrate fairness metrics, transparency requirements, and human-in-the-loop review processes.

By reorienting remote assessment around equity, transparency, and student well-being, educational stakeholders can uphold both integrity and inclusivity. This requires cross-functional efforts—policy reform, vendor partnerships, faculty training, and accessible appeals mechanisms—to ensure that remote proctoring serves as an enabler of academic justice rather than a barrier.

METHODOLOGY

This study implemented a mixed-methods research design to comprehensively assess bias in remote proctoring systems. Mixed-methods combine quantitative rigor with qualitative depth, enabling triangulation of findings to enhance validity and generalizability.

1. Quantitative Survey (n=500)

A stratified random sample of 500 students from three universities—two public and one private, across urban and rural settings—was recruited. Stratification criteria included socioeconomic status (annual household income bands), geographic region (urban vs. rural; domestic vs. international), and self-reported disability status. The survey instrument comprised four sections: demographic profile, technology environment (device type, webcam resolution, internet bandwidth, testing location), proctoring experiences (number and type of flags, appeal outcomes), and psychological impact (stress level measured via a validated 5-point Likert scale).

The survey was administered online, with a completion rate of 93%. Data were cleaned to remove incomplete responses, yielding 465 valid entries.

2. Semi-Structured Interviews (n=20)

Twenty academic administrators and proctoring coordinators—selected via purposive sampling to represent diverse institutional contexts—participated in one-hour interviews. The interview guide covered vendor selection criteria, contract negotiation practices, fairness auditing procedures, flag resolution protocols, and student support workflows. Interviews were recorded, transcribed verbatim, and coded using NVivo software. Thematic analysis identified recurrent patterns related to transparency challenges, resource constraints, and perceptions of bias.

3. Proctoring Log Analysis (n=2,000 sessions)

Proctoring platforms provided anonymized logs for 2,000 exam sessions conducted over a six-month period. Each log entry included session ID, flag triggers (e.g., "multiple faces detected," "suspicious eye movement," "background noise interference"), timestamp, and resolution outcome (e.g., flagged, cleared after review). Device metadata—video resolution, average bitrate—were also captured. Chi-square tests assessed the association between categorical variables (e.g., income bracket vs. flag occurrence), while logistic regression models estimated the odds ratios of specific flag types given predictors such as device resolution, bandwidth fluctuations, and self-reported disability.

4. Ethical Considerations

The study obtained Institutional Review Board (IRB) approval. Participation was voluntary; informed consent outlined data usage, anonymization procedures, and the right to withdraw. No personally identifiable information was stored; all datasets were encrypted at rest. Findings are reported in aggregate to prevent re-identification.

5. Data Integration

Quantitative and qualitative data streams were integrated through a convergent design: survey statistics provided prevalence rates, interviews offered contextual explanations, and log analysis validated behavioral patterns. Triangulation enhanced the robustness of conclusions and ensured recommendations addressed both systemic and experiential dimensions of bias.

This methodology—anchored in stakeholder perspectives, empirical system metrics, and statistical analysis—affords a holistic understanding of proctoring biases and grounds the subsequent results and recommendations in reliable evidence.

RESULTS

The integrated analysis of survey responses, interview narratives, and system logs reveals pervasive bias in remote proctoring practices, manifesting across technological, socioeconomic, cultural, and algorithmic dimensions.

1. Flag Prevalence and Socioeconomic Disparities

Of 465 valid survey respondents, 176 (38%) experienced at least one flag during a remote exam, and 56 (12%) encountered multiple flags across sessions. A chi-square test indicated a significant association between household income and flag incidence (χ^2 (2, N=465)=22.4, p<0.001). Students from households earning <\$30,000 USD annually had a flag rate of 52%, compared to 27% for those earning >\$75,000 USD. Logistic regression estimated that low socioeconomic status predicted a 1.9-fold increase in overall flag likelihood (OR=1.90, 95% CI [1.35, 2.67], p<0.001).

13 Online & Print International, Peer Reviewed, Refereed & Indexed Monthly Journal

2. Technological Constraints and Flag Types

System log analysis of 2,000 sessions produced 720 flagged exams. The most frequent triggers were "multiple faces detected" (38%), "suspicious eye movement" (27%), and "background noise interference" (20%). Video resolution under 480p was associated with a 2.3-fold increase in "multiple faces" flags (OR=2.30, 95% CI [1.80, 2.94], p<0.001). Bandwidth fluctuations—measured by bitrate variance exceeding 30% of mean—correlated with 1.9 times higher odds of "noise interference" flags (OR=1.90, 95% CI [1.45, 2.50], p<0.001).

3. Cultural and Neurodiversity Factors

Survey data revealed that 30% of international students (n=120) perceived eye-gaze flags as culturally biased. Comparative rates among domestic students were 8%. Interviews with administrators confirmed that proctoring vendors lacked mechanisms to calibrate behavioral thresholds to cultural norms. Additionally, 14% of survey participants self-identified with neurodiverse conditions; this subgroup faced a 2.1-fold higher likelihood of "suspicious movement" flags (OR=2.10, 95% CI [1.40, 3.15], p<0.001). Administrators acknowledged the absence of neurodiversity accommodations in default system settings.

4. Psychological Impact and Perceptions of Fairness

Flagged students reported a mean exam-stress score of 4.2 (SD=0.7) on a 5-point scale, significantly higher than the non-flagged group's mean of 2.7 (SD=0.9), t(463)=24.8, p<0.001. Qualitative comments highlighted feelings of surveillance ("I felt like I was suspected of cheating from the start") and anxiety about appeals ("I spent hours explaining I have ADHD, but still got penalized"). Survey items assessing trust in remote assessments showed that 65% of flagged students disagreed with the statement "I believe the proctoring system is fair," compared to 18% of non-flagged students.

5. Administrator Insights

Thematic analysis of 20 interviews surfaced three primary themes: (a) **Transparency Deficit**—vendors provide limited access to algorithmic logic, impeding institutional oversight; (b) **Resource Gaps**—many universities lack dedicated staff or technical expertise to interpret fairness audits; and (c) **Inconsistent Appeals**—flag resolution processes are ad hoc, with response times ranging from 24 hours to two weeks, disadvantaging students with tight exam schedules.

These results underscore the multifaceted nature of proctoring bias and its tangible effects on student equity, psychological well-being, and institutional integrity.

CONCLUSION

This study illuminates the entrenched biases that pervade remote proctoring systems and their deleterious impacts on diverse student cohorts. Technological disparities—manifesting through low-resolution webcams and unstable internet—lead to disproportionate flagging among economically disadvantaged learners. Cultural and neurodiversity considerations are largely absent in vendor calibration protocols, resulting in elevated false-positive rates for international students and those with cognitive or behavioral variations. Psychologically, flagged students endure heightened stress and diminished trust in remote assessments, while administrators grapple with opaque algorithms and erratic appeal mechanisms.

To redress these inequities, a comprehensive bias mitigation framework is essential:

- 1. **Algorithmic Transparency:** Vendors must disclose flagging criteria and provide audit-ready documentation of AI training datasets. Open-source or third-party validated models should be prioritized to enable informed institutional oversight.
- Adaptive Thresholding: Proctoring systems should incorporate context-aware sensitivity settings, automatically adjusting
 based on device capabilities, network conditions, and documented accessibility needs. Dynamic calibration reduces false
 positives while maintaining security.
- Inclusive Model Development: Behavioral datasets used to train AI should encompass diverse cultural practices and neurodiverse movement patterns. Vendor partnerships with multicultural and disability advocacy organizations can ensure representative model inputs.
- 4. **Robust Support and Appeals:** Clear, standardized appeal workflows—featuring rapid human review and feedback loops—must be institutionalized. Dedicated proctoring support teams should collaborate with disability services and DEI offices to provide tailored accommodations.

By implementing these strategies through collaborative governance, educational institutions and technology providers can transform remote proctoring from a source of inequity into a pillar of fair and accessible online assessment. Future research should evaluate the longitudinal efficacy of these interventions, track the evolution of AI fairness benchmarks, and explore student perceptions across evolving digital learning contexts. Ultimately, sustaining academic integrity in remote environments hinges on balancing security with empathy, ensuring that every learner is assessed on merit, free from systemic bias.

REFERENCES

- Ahmed, S., & Lee, J. (2021). Examining the impact of webcam quality on remote proctoring outcomes. Journal of Educational Technology & Society, 24(2), 45–58.
- Bennett, R. S. (2020). Cultural nuances in online assessment surveillance. International Review of Research in Open and Distributed Learning, 21(4), 120–136.
- Chen, Y., & Park, H. (2021). Algorithmic transparency in academic integrity tools. Journal of Learning Analytics, 9(1), 78–95.
- Dahri, A., & Kumar, P. (2021). Socioeconomic disparities in digital learning environments. Computers & Education, 165, Article 104134.
- Evans, L., & Grant, M. (2019). The psychology of invigilation: Stress and performance in remote exams. Assessment & Evaluation in Higher Education, 44(7), 1045–1061.
- Garcia, P., & Roberts, S. (2020). Internet connectivity challenges in remote proctoring. International Journal of Educational Technology in Higher Education, 17(1), 21.
- Holmes, K., & Zhao, L. (2021). Student perceptions of fairness in online assessments. Educational Assessment, 26(3), 213–231.
- Ibrahim, M., & Davis, R. (2021). Bias audits for AI-based proctoring systems. AI & Society, 37(4), 589–602.
- Johnson, E. T., & Kim, S. (2018). Adaptive thresholding in remote exam monitoring. IEEE Transactions on Learning Technologies, 11(3), 384–391.
- Lee, A., & Martinez, J. (2021). Addressing false positives in remote proctoring. Computers in Human Behavior, 114, Article 106540.
- Miller, D. K., & Ahmed, F. (2020). Accommodating neurodiverse students in online assessments. Journal of Special Education Technology, 35(4), 195–209.
- O'Connor, S., & Gupta, R. (2019). Equity in remote academic integrity enforcement. Educational Policy Analysis Archives, 27(35), 1–20.
- Park, S., & Thompson, J. (2021). Designing inclusive proctoring software. International Journal of Human–Computer Interaction, 38(12), 1160–1175.
- Quinn, L., & Stephens, M. (2021). Environmental factors affecting remote exam reliability. Journal of Educational Computing Research, 59(8), 1451–1473.
- Roberts, J. K., & Silva, E. (2020). Student stress and remote invigilation: An empirical study. Psychology Learning & Teaching, 19(2), 112–124.
- Turner, V., & Wang, X. (2021). Socio-technical challenges in remote proctoring adoption. International Journal of Educational Management, 36(5), 872–889.
- Zhang, Q., & Liu, H. (2019). Cross-cultural validation of automated proctoring systems. Journal of Cross-Cultural Psychology, 50(6), 801–820.