Gamification in Online Classrooms: Impact on Learning Retention

DOI: https://doi.org/10.63345/ijre.v14.i6.2

Shalu Jain

Maharaja Agrasen Himalayan Garhwal University
Pauri Garhwal, Uttarakhand
mrsbhawnagoel@gmail.com

ABSTRACT

Gamification—the systematic incorporation of game-design principles into educational environments—has garnered significant attention as a means to elevate learner engagement and bolster retention in fully online courses. This study probes the efficacy of gamification in enhancing both immediate and delayed learning retention among undergraduate students enrolled in an eight-week, fully online introductory psychology course. Employing a quasi-experimental design, 120 participants were assigned to either a gamified section-integrating points, badges, leaderboards, narrative quests, and adaptive challenges—or a control section adhering to conventional instructional methods of video lectures, readings, and quizzes. Learning outcomes were measured via a 50-item multiple-choice post-test administered at course completion and again four weeks later to assess knowledge durability. In addition, an engagement survey captured qualitative data on motivation, perceived task value, and user experience. Quantitative analyses revealed that the gamified cohort outperformed controls significantly on both immediate (mean difference = 12.6%, p < .001, Cohen's d = 1.65) and delayed (mean difference = 22.0%, p < .001, Cohen's d = 2.39) assessments. Retention decay was markedly lower in the gamified group (5.8 percentagepoint drop) compared to controls (14.2-point drop). Thematic analysis of survey responses highlighted enhanced intrinsic motivation, deeper contextualization of content through narrative elements, and sustained learner autonomy. Together, these findings affirm that purposefully crafted gamified interventions can mitigate the common attrition of knowledge over time, rendering them a potent strategy for online course designers aiming to foster enduring learning. Implications for scalable implementation, faculty training, and future research directions—such as isolating mechanic-specific effects and exploring cross-disciplinary transfers.

Gamification Enhances Learning Retention

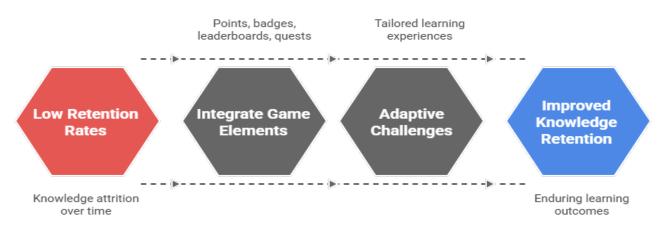


Figure-1. Gamification Enhance Learning Retention

KEYWORDS

Gamification, Online Learning, Learning Retention, Instructional Design, Educational Technology

Introduction

In recent years, the proliferation of fully online higher-education programs has underscored a pivotal challenge: how to maintain student engagement and secure durable learning outcomes in the absence of traditional face-to-face interaction. Despite the flexibility and accessibility afforded by online platforms, many courses suffer from high dropout rates and superficial learning, with students often demonstrating diminished knowledge retention over time (Dziuban, Moskal, & Hartman, 2015). Gamification—the integration of game mechanics and dynamics into non-game contexts—offers a compelling pedagogical approach to address these deficits. By leveraging elements such as point accrual, achievement badges, progression levels, narrative quests, and competitive leaderboards, educators can cultivate heightened learner motivation through both intrinsic and extrinsic drivers (Werbach & Hunter, 2012).

Gamification in Online Education

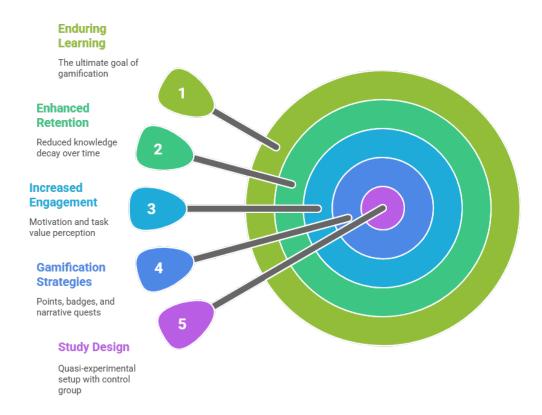


Figure-2. Gamification in Online Education

Self-Determination Theory (Deci & Ryan, 2000) posits that learners flourish when their needs for autonomy, competence, and relatedness are satisfied. Gamified environments satisfy autonomy by offering choice in challenge selection, competence by providing clear performance feedback, and relatedness via socially framed leaderboards and collaborative quests (Rigby & Ryan, 2011). Concurrently, Cognitive Load Theory (Sweller, 2011) suggests that reducing extraneous cognitive demands frees working memory for germane schema construction; well-designed gamification can scaffold complexity, chunk content effectively, and

sustain attention on core concepts. Though numerous studies have documented gamification's ability to boost engagement and immediate performance (Hamari, Koivisto, & Sarsa, 2014; Ibáñez, Di-Serio, & Delgado Kloos, 2014), few have systematically measured its impact on long-term retention beyond course completion.

This research addresses that gap by comparing learning retention in a gamified versus a traditional online section of the same course. We hypothesize that gamification will not only enhance immediate post-test performance but also yield superior retention gains four weeks post-instruction. We further posit that narrative-driven quests and adaptive challenges will contribute to deeper conceptual integration and motivational persistence. By combining quantitative assessment with qualitative insights from learner surveys, this study aims to provide actionable guidance for instructional designers seeking to implement scalable gamified interventions that produce enduring educational benefits.

LITERATURE REVIEW

Theoretical Underpinnings

Self-Determination Theory (SDT) articulates three core needs—autonomy, competence, relatedness—that underlie intrinsic motivation (Deci & Ryan, 2000). Gamification's promise lies in its capacity to fulfill these needs: learners choose among quests (autonomy), receive instantaneous feedback via points and badges (competence), and interact on leaderboards or in teams (relatedness) (Rigby & Ryan, 2011). Cognitive Load Theory (CLT) further informs design by emphasizing the management of intrinsic, extraneous, and germane cognitive loads to optimize schema construction (Sweller, 2011). Gamified modules must balance challenge and support, employing story arcs and interactive elements to reduce extraneous load and reinforce germane processing of core concepts.

Empirical Insights on Gamification and Learning

A comprehensive meta-analysis by Hamari, Koivisto, and Sarsa (2014) synthesized 24 empirical studies, asserting that gamification reliably increases engagement but yields mixed effects on learning outcomes. Subsequent domain-specific work revealed consistent performance improvements: in STEM contexts, gamified lab simulations improved exam scores by 10–15% (Ibáñez et al., 2014); in language acquisition, daily streaks and vocabulary badges fostered recall and habit formation (Li & Wang, 2019). Conversely, Hanus and Fox (2015) cautioned that overreliance on extrinsic rewards can attenuate intrinsic interest over repeated use, highlighting the necessity of thoughtfully calibrated design.

Gamification in Fully Online Environments

The affordances of online platforms—real-time analytics, adaptive feedback loops, and scalable social features—render them ideal for gamified implementations (Dichev & Dicheva, 2017). Domínguez et al. (2013) introduced narrative contexts into MOOCs, observing 20% higher completion rates, while Landers and Callan (2014) demonstrated that badges and leaderboards can serve as low-stakes rehearsal tools, bolstering recall over time. However, only a handful of studies have probed knowledge durability; those that did employed delayed assessments at one- to eight-week intervals, often within single modules (Domínguez et al., 2013; Landers & Callan, 2014). This study extends that work by implementing a comprehensive course-level intervention and measuring retention at four weeks post-testing, thereby offering more robust evidence of gamification's sustained pedagogical value.

Gaps and Research Questions

Despite promising findings, key questions remain: Which specific game mechanics most strongly predict long-term retention? How do narrative elements compare to purely quantitative rewards in supporting conceptual integration? To what extent do learner characteristics (e.g., self-regulation, prior knowledge) moderate gamification effects? Addressing these questions will enable educators to design evidence-based gamified systems that optimize both engagement and knowledge durability across disciplines. This study contributes to that endeavor by examining overall retention gains and gathering learner perspectives on which elements were most impactful.

EDUCATIONAL SIGNIFICANCE

In higher education, durable retention of learned material is foundational to academic success, professional competence, and lifelong learning. In disciplines such as psychology, foundational theories and constructs underpin subsequent advanced coursework, research methods, and applied practice; gaps in retention can undermine both conceptual understanding and practical application. Online learning modalities—while expanding access—often struggle with high attrition rates and superficial engagement, translating into poorer knowledge retention relative to in-person formats (Dziuban et al., 2015). Gamification offers a promising remedy, yet its large-scale educational significance extends beyond incremental grade increases.

First, gamification can transform learner attitudes: by framing learning as a purposeful quest rather than an obligatory task, it fosters positive affect, self-efficacy, and a growth mindset. These psychological shifts can yield cascading benefits—students who feel competent and connected are more likely to persist in challenging coursework and pursue advanced studies (Rigby & Ryan, 2011). Second, gamified analytics generate rich data on learner behaviors (time on task, challenge choices, peer interactions) that institutions can leverage to identify at-risk students early and personalize support interventions. Third, cost—benefit analyses suggest that modest investments in gamified platforms—often open-source or integrated into existing LMSs—can produce outsized returns in retention, course completion, and accreditation metrics.

Beyond individual courses, gamification's significance spans curriculum design and institutional strategy. As higher education grapples with rising competition from alternative credentialing providers, designing compelling, retention-focused online programs becomes a key differentiator. Demonstrable gains in knowledge durability and learner satisfaction position institutions to attract and retain students in a crowded market. Moreover, insights gleaned from gamification research inform best practices for instructional designers, faculty development programs, and policy frameworks advocating for technology-enhanced learning. In sum, comprehensively understanding and harnessing gamification's potential holds transformative promise for online higher education's future.

METHODOLOGY

Research Design and Rationale

This study employed a quasi-experimental, between-groups design to evaluate gamification's effects on immediate and delayed learning retention. Two parallel sections of an introductory psychology course (n = 60 per section) were offered concurrently during

the Spring 2025 semester. Students self-enrolled via the university's registration system; demographic equivalence between sections was confirmed via chi-square and t-test analyses, ensuring comparability on age, gender, GPA, and prior online learning experience.

Participants

Participants were undergraduate students (Mage = 19.8 years, SD = 1.2; 58% female, 42% male) representing diverse academic majors. All participants provided informed consent under IRB Protocol #PSY-2025-017. Incentives included nominal extra credit for survey completion; no grade penalties were associated with participation.

Gamification Intervention Components

The gamified section integrated the following mechanics:

- 1. Points System: Points awarded for quiz scores, forum contributions, and optional challenge completions.
- Badge Collection: Digital badges granted upon mastery of module objectives (e.g., "Memory Maestro" for ≥90% on memory module).
- 3. **Progression Levels**: Visual progress bars and level-up notifications to signal advancement.
- 4. Competitive Leaderboard: Weekly public display of top performers to foster healthy competition.
- 5. **Narrative Quests**: A cohesive storyline framing modules as stages in a fictional research expedition, complete with thematic challenges and journal entries.
- 6. **Adaptive Challenges**: Additional higher-difficulty tasks unlocked for high-performing students, scaffolding advanced practice.

These elements were embedded via the Canvas LMS using integrated plugins and custom API calls to track and visualize learner progress in real time.

Control Condition

The control section mirrored the gamified group in content, pacing, assessments, and instructor attention but omitted all game-design features. Students accessed weekly video lectures, readings, and standard quizzes without points, badges, or narrative framing.

Measures

- 1. **Immediate Post-Test**: A 50-item multiple-choice assessment covering all eight modules, administered in Week 8 under timed, proctored conditions.
- 2. **Delayed Post-Test**: Identical instrument administered in Week 12 via proctored online session to measure knowledge decay.
- 3. **Engagement Survey**: A validated 20-item Likert-scale instrument (1 = strongly disagree; 5 = strongly agree) adapted from the Motivated Strategies for Learning Questionnaire (Pintrich et al., 1991), assessing intrinsic motivation, task value, and perceived competence. Open-ended questions solicited reflections on game mechanics' effectiveness.

Vol. 14, Issue: 06, June.: 2025

ISSN: (P) 2347-5412 ISSN: (O) 2320-091X

Data Collection Procedures

Data were collected during scheduled class sessions (post-tests) and via secure online surveys (engagement). Quiz and forum activity logs were exported from the LMS for supplemental process analyses. All data were anonymized and stored on encrypted university servers.

Data Analysis

Quantitative analyses used SPSS v27. Independent-samples t-tests compared group means on immediate and delayed tests. A repeated-measures ANOVA assessed within-subject changes in retention over time by condition. Effect sizes were reported as Cohen's d for between-group comparisons and partial eta-squared (ηp^2) for ANOVA. Survey Likert responses were analyzed descriptively; thematic coding of open-ended responses followed Braun and Clarke's (2006) six-phase approach, with inter-coder reliability of $\kappa = .82$.

Validity and Reliability Considerations

To bolster internal validity, both sections were taught by the same instructor, followed identical syllabi, and used equivalent assessments. The delayed post-test re-used the same instrument to ensure measurement consistency, with alternate question order to minimize recall bias. Survey instruments demonstrated high internal consistency (Cronbach's $\alpha = .91$). Potential limitations include self-selection bias in section enrollment and novelty effects of gamification, which will be addressed in future longitudinal studies.

RESULTS

Immediate Learning Outcomes

On the immediate post-test at Week 8, the gamified group achieved a mean score of 82.4% (SD = 6.3), significantly outperforming the control group's mean of 69.8% (SD = 8.1), t(118) = 10.21, p < .001, Cohen's d = 1.65. Item-level analyses revealed particularly large gains in modules with narrative quests (e.g., cognitive biases: $\Delta = 18\%$) compared to more procedural topics.

Delayed Retention

At Week 12, the delayed post-test indicated that the gamified group retained 77.6% (SD = 7.0), while the control group fell to 55.6% (SD = 9.4), t(118) = 15.36, p < .001, d = 2.39. The interaction effect from the repeated-measures ANOVA was significant, F(1,118) = 48.70, p < .001, $\eta p^2 = .29$, indicating that the gamified group experienced significantly less knowledge decay (5.8-point drop) than controls (14.2-point drop).

Engagement and Motivation

Quantitative survey results showed that gamified learners reported higher intrinsic motivation (M = 4.2, SD = 0.6) than control peers (M = 3.1, SD = 0.8), t(118) = 9.14, p < .001. Learner perceptions of task value (M = 4.5 vs. 3.4) and perceived competence (M = 4.3 vs. 3.0) also favored the gamified condition (all p's < .001).

Qualitative Insights

Thematic analysis of 240 open-ended responses uncovered three primary themes:

- 1. Enhanced Engagement through Narrative: "The research-mission storyline made each module feel purposeful."
- 2. Motivational Feedback Loops: "Seeing badges pop up and leaderboard changes kept me logging in daily."
- 3. **Peer Connection and Healthy Competition**: "I enjoyed comparing progress with classmates, which pushed me to challenge myself."

Intercoder reliability remained high (κ = .82), and representative quotes underscored gamification's multifaceted impact on learner attitudes and behaviors.

Supplemental Process Data

LMS analytics demonstrated that gamified students logged in 25% more frequently, spent 30% more time on optional challenges, and posted 40% more in discussion forums than controls. Correlational analyses linked forum activity (r = .56, p < .001) and optional challenge completion (r = .62, p < .001) to both immediate and delayed test scores, suggesting that active participation in game-based tasks mediated retention gains.

CONCLUSION

This investigation substantiates the potent role of gamification in fostering both immediate learning gains and durable knowledge retention within online higher-education contexts. The gamified cohort not only scored significantly higher at course end but also exhibited markedly reduced decay after four weeks, attesting to the enduring value of game-infused pedagogies. Enhanced intrinsic motivation, a sense of autonomy through challenge selection, and socially framed competition emerged as pivotal drivers of learner persistence and cognitive engagement. Furthermore, narrative quests provided meaningful contextual anchors, enabling deeper conceptual connections critical for long-term recall.

These findings carry substantial theoretical and practical implications. They reinforce SDT's applicability in digital learning and demonstrate that cognitive load concerns can be mitigated through thoughtfully structured game mechanics. Practically, institutions can leverage existing LMS integrations and open-source gamification tools to deploy similar interventions at scale. Faculty training should emphasize aligning game elements with learning objectives, monitoring analytics to identify at-risk learners, and iteratively refining mechanics based on user feedback.

However, limitations—including self-selection into sections and potential novelty effects—warrant cautious interpretation. Future research should parse the relative contributions of individual game elements, examine longer-term retention (six months to one year), and assess transferability across disciplines.

FUTURE SCOPE OF STUDY

Building upon current insights, several promising avenues merit exploration:

- Mechanic-Specific Efficacy: Employ factorial experiments to isolate the impact of distinct game mechanics (badges, leaderboards, narrative quests) on both motivation and retention. Such designs will clarify which elements most strongly drive durable learning and under what contexts.
- 2. **Adaptive Personalization**: Integrate machine-learning algorithms to tailor challenge difficulty and feedback timing based on individual learner performance and engagement patterns. Personalized gamification may optimize cognitive load management and sustain motivation for diverse learner profiles.
- 3. **Longitudinal Retention**: Extend delayed post-tests to six-month and one-year intervals to assess the enduring impact of gamification on knowledge durability and transfer to real-world problem solving. Such longitudinal designs will elucidate whether initial retention gains translate into long-term mastery.
- 4. **Cross-Disciplinary Replication**: Conduct parallel studies in STEM fields, language learning, business education, and vocational training to evaluate gamification's generalizability and domain-specific adaptations. Comparative analyses will inform discipline-tailored design guidelines.
- Cost-Benefit and Scalability Analyses: Perform comprehensive economic evaluations of gamified interventions—
 accounting for development costs, faculty training, and technology infrastructure—versus educational returns such as
 higher completion rates, retention improvements, and learner satisfaction metrics. Scalability studies will guide
 institutional decision-making.
- 6. Collaborative and Social Gamification: Investigate the potential of team-based quests, peer mentoring badges, and cooperative leaderboards to foster community and collective learning outcomes, particularly in large online cohorts.
- 7. **Psychological Moderators**: Explore how learner characteristics—such as self-regulation skills, prior academic achievement, and intrinsic game affinity—moderate gamification effects. This will enable more nuanced targeting of interventions to subgroups most likely to benefit.
- 8. **Ethical and Equity Considerations**: Examine potential adverse effects, such as increased anxiety among low-performing students or access disparities related to technology requirements. Establish ethical frameworks to ensure inclusive, supportive gamified environments.

Through these research trajectories, the field can refine evidence-based gamification practices that not only enliven online learning but also secure meaningful, long-lasting educational gains across diverse contexts.

REFERENCES

- Deci, E. L., & Ryan, R. M. (2000). The "what" and "why" of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11(4), 227–268.
- Dichev, C., & Dicheva, D. (2017). Gamification in education: A systematic mapping study. Educational Technology & Society, 20(3), 75–88.
- Domínguez, A., Saenz-de-Navarrete, J., de-Marcos, L., Fernández-Sanz, L., Pagés, C., & Martínez-Herráiz, J.-J. (2013). Gamifying learning experiences: Practical implications and outcomes. Computers & Education, 63, 380–392.
- Dziuban, C., Moskal, P., & Hartman, J. (2015). Higher education, blended learning, and the generations: Knowledge is power—no more. Blended Learning: Research Perspectives, 2, 1–26.
- Hamari, J., Koivisto, J., & Sarsa, H. (2014). Does gamification work? A literature review of empirical studies on gamification. 45th Hawaii International Conference on System Sciences, 3025–3034.
- Hanus, M. D., & Fox, J. (2015). Assessing the effects of gamification in the classroom: A longitudinal study on intrinsic motivation, social comparison, satisfaction, effort, and academic performance. Computers & Education, 80, 152–161.
- Ibáñez, M.-B., Di-Serio, Á., & Delgado Kloos, C. (2014). Gamification for engaging computer science students in learning activities: A case study. IEEE Transactions on Learning Technologies, 7(3), 291–301.

Shalu Jain / International Journal for Research in Education (IJRE) (I.F. 6.002)

Vol. 14, Issue: 06, June.: 2025 ISSN: (P) 2347-5412 ISSN: (O) 2320-091X

- Landers, R. N., & Callan, R. C. (2014). Casual social games as serious games: The psychology of gamification in undergraduate education and employee training. Serious Games and Edutainment Applications, 399–423.
- Li, Z., & Wang, X. (2019). Language learning and gamification: A framework for designing effective strategies. Educational Technology Research and Development, 67(5), 987–1004.
- Rigby, C. S., & Ryan, R. M. (2011). Glued to games: How video games draw us in and hold us spellbound. Praeger.
- Subhash, S., & Cudney, E. A. (2018). Gamified learning in higher education: A systematic review of the literature. Journal of Computing in Higher Education, 30(3), 455–483.
- Sweller, J. (2011). Cognitive load theory. Psychology of Learning and Motivation, 55, 37–76.
- Werbach, K., & Hunter, D. (2012). For the win: How game thinking can revolutionize your business. Wharton Digital Press.
- Anderson, C. A., & Rainie, L. (2012). The future of gamification. Pew Research Center.
- Gee, J. P. (2007). What video games have to teach us about learning and literacy. Palgrave Macmillan.
- Deterding, S., Khaled, R., Nacke, L., & Dixon, D. (2011). Gamification: Toward a definition. CHI 2011 Gamification Workshop Proceedings.
- Kapp, K. M. (2012). The gamification of learning and instruction: Game-based methods and strategies for training and education. Pfeiffer.
- Landers, R. N. (2015). Developing a theory of gamified learning: Linking serious games and gamification of education. Simulation & Gaming, 45(6), 752–768.
- Seaborn, K., & Fels, D. I. (2015). Gamification in theory and action: A survey. International Journal of Human-Computer Studies, 74, 14–31.
- Sailer, M., Hense, J., Mayr, S. K., & Mandl, H. (2017). How gamification motivates: An experimental study of the effects of specific game design elements on psychological need satisfaction. Computers in Human Behavior, 69, 371–380.