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ABSTRACT

This manuscript explores the design, implementation, and evaluation of data-driven learning outcome mapping within
digital education systems. By leveraging analytics and visualization techniques, educators can align curriculum content,
instructional strategies, and assessment methods with predefined learning outcomes. Our proposed framework integrates
an outcome ontology, automated artifact tagging, a weighted mastery scoring algorithm, and an interactive dashboard, all
embedded within an open-source learning management system. We conducted a mixed-methods study with 350
undergraduate students enrolled in a semester-long “Data Structures” course, and 12 instructors (5 faculty and 7 teaching
assistants). Quantitative analyses assessed mapping accuracy (Cohen’s k), predictive validity (Pearson’s r), and system usage
metrics; qualitative interviews examined instructor perceptions of transparency, usability, and instructional adaptation.
Results show substantial mapping reliability (x = 0.78), significant correlations between mapped mastery and final exam
performance (r up to 0.62, p < .001), and a 12% reduction in quiz drop-outs owing to early interventions. Instructors
reported enhanced clarity in alignment, more targeted pedagogy, and data-informed curriculum adjustments. Student
behavior analytics revealed increased peer collaboration among those below mastery thresholds. The contributions include
(1) a reusable ontology for computer science learning outcomes, (2) a scalable tagging and mapping pipeline, and (3) evidence
of pedagogical impact in real-world settings. We discuss technical, pedagogical, and organizational implications, outline
challenges in cross-domain generalization, and propose directions for integrating adaptive learning paths and automated

tag refinement to further close the loop between data and instruction.
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INTRODUCTION

Digital education systems have revolutionized higher education by enabling ubiquitous access to learning resources, real-time
interaction, and rich usage data. However, the pedagogical effectiveness of these platforms hinges on clearly defined learning

outcomes—statements articulating the skills, knowledge, and attitudes students should acquire. Constructive alignment theory posits
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that teaching activities and assessments must explicitly connect to intended outcomes to maximize learning efficacy (Biggs & Tang,
2011). Yet, in practice, curriculum designers and instructors often rely on manual mapping techniques—spreadsheets, ad hoc

checklists, and informal dialogues—that lack transparency, scalability, and real-time feedback loops.
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Figure-1.Data-Driven Learning Outcome Mapping Process

Against this backdrop, learning analytics has emerged to harness data generated by learners’ interactions—in clickstreams,
discussion forums, assessments, and content engagement—to support personalized instruction and early interventions (Siemens &
Long, 2011). Despite rapid advances in predictive modeling and visualization, few systems offer cohesive support for outcome
mapping: aligning each digital artifact—be it a quiz question, code submission, or forum post—with a formal learning objective.
Without this alignment, analytics dashboards may flag at-risk students but leave instructors uncertain which specific competencies

require reinforcement.

This study develops and evaluates a data-driven learning outcome mapping framework designed to integrate seamlessly into existing

learning management systems (LMS). Our contributions address three core research questions:

1. Mapping Methodology: How can diverse digital artifacts be systematically tagged and mapped to hierarchically structured
learning outcomes?

2. Pedagogical Impact: To what extent does transparent, data-driven mapping support instructional decision-making, early
interventions, and curriculum refinement?

3. Technical and Organizational Challenges: What barriers arise when scaling mapping frameworks across courses and

institutions, and how can they be mitigated?

To answer these questions, we implemented a five-stage pipeline—ontology development, artifact tagging (combining automated

NLP suggestions with instructor validation), data collection, mastery scoring, and dashboard visualization—in an open-source LMS.
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We evaluated the framework in a semester-long “Data Structures” course with 350 students and 12 instructional staff. A mixed-
methods design combined quantitative metrics (mapping reliability, predictive validity, usage frequency) with qualitative interviews
exploring instructor experiences. Our findings demonstrate high mapping reliability (k = 0.78), meaningful correlations between
outcome mastery and final exam scores (r up to 0.62), and systematic pedagogical adaptations informed by dashboard insights.
Instructors reported increased confidence in alignment decisions, more targeted remediation strategies, and enhanced student
engagement through transparent performance feedback. We conclude by discussing generalizability beyond computer science, the

need for fully automated tagging, and prospects for integrating adaptive learning paths to close the analytics-instruction loop.

Achieving Data-Driven Learning Outcomes
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Figure-2.Achieving Data-Driven Learning Outcomes

LITERATURE REVIEW

Constructive Alignment and Learning Outcomes

Constructive alignment theory argues that learning activities and assessments should be deliberately designed to support specified
outcomes, ensuring coherence between intended goals and educational experiences (Biggs & Tang, 2011). Accreditation bodies and
curriculum frameworks mandate outcome articulation, yet manual alignment processes—faculty workshops, mapping matrices,

committee reviews—often fail to provide granular, real-time evidence of alignment fidelity.

Learning Analytics: From Prediction to Prescriptive Insights
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Learning analytics leverages data mining, machine learning, and visualization to understand and optimize learning processes
(Siemens & Long, 2011). Applications span early warning systems (Arnold & Pistilli, 2012), recommender systems (Khalil &
Ebner, 2015), and engagement dashboards (Verbert et al., 2013). However, most analytics focus on predicting at-risk students rather

than explicating how specific competencies map to learning activities and assessments.
Automated Outcome Mapping Approaches

Recent research explores computational alignment using ontology-based tagging, natural language processing (NLP), and
probabilistic inference. Wang, Hauft, and Houben (2018) developed an ontology for tagging course resources, enabling metadata-
driven resource discovery. Yudelson et al. (2013) applied Bayesian knowledge tracing to infer competency mastery from student
actions. Nevertheless, these techniques often remain in prototype form, lacking integration into mainstream LMS platforms or

dashboards that instructors routinely use.
Visualization for Curricular Transparency

Dashboards designed for outcome visualization can make alignment and mastery explicit. Khalil and Ebner (2016) demonstrated
dashboards that display real-time mastery per objective, prompting timely support. Tempelaar, Rienties, and Giesbers (2015)
showed that clear visualizations enhance instructor responsiveness. Yet existing dashboards usually center on performance trends

rather than direct mapping between artifacts and formal outcomes, leaving a gap in end-to-end alignment transparency.
Synthesis and Research Opportunity

The convergence of analytics, automated mapping, and visualization presents an opportunity to build unified frameworks that track
learner interactions, map them to structured outcomes, and present actionable insights to educators. Our work synthesizes prior
advances into a cohesive system—Iinking artifact tagging, mastery scoring, and dashboard visualization—to address gaps in real-

time outcome alignment within digital education environments.
METHODOLOGY

Research Design and Rationale

We employed a convergent mixed-methods design to triangulate quantitative evidence of framework reliability and validity with
qualitative insights into instructor experiences. This allowed us to capture both statistical performance metrics and contextualized

pedagogical perspectives.
Participants and Setting

The study took place during the Fall 2024 semester in a mid-sized university’s Computer Science department. The target course—
“Data Structures”—enrolled 350 undergraduate students. Instructional staff included 5 lead faculty and 7 graduate-level teaching

assistants. All participants provided informed consent under IRB-approved protocols.

Framework Implementation
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1.  Outcome Ontology Development

o  We consulted departmental learning outcome documents and Bloom’s Taxonomy to define five primary domains
(e.g., Algorithmic Thinking, Data Representation, Ethical Use of Data) and 18 sub-outcomes (e.g., “Select
appropriate data structures,” “Analyze algorithmic complexity”).

o The ontology was encoded in JSON-LD format, supporting hierarchical relationships and metadata fields
(cognitive level, prerequisite outcomes).

2. Artifact Tagging Pipeline

o Automated Tagging: We developed an NLP model using TF-IDF feature extraction and cosine similarity to
suggest outcome tags for each digital artifact (lecture slides, assignment prompts, quiz questions).

o Instructor Validation: Suggested tags were presented in a web interface. Instructors could accept, reject, or
modify tags. Average validation time per artifact was 45 seconds, reducing manual effort by 60% compared to
purely manual tagging.

3. Data Collection and Preprocessing

o We instrumented the LMS to log quiz responses, assignment submission grades, forum interactions (post length,
reply counts), and time-on-task for code exercises.

o Logs were cleaned, anonymized, and aggregated by student and artifact. Outliers (e.g., excessive login durations)
were filtered using interquartile range thresholds.

4. Mastery Scoring Algorithm

o Each artifact-outcome pair carried a weight based on assessment importance (e.g., summative quizzes Vvs.
formative exercises) and Bloom’s level.

o A student’s mastery score for an outcome was computed as a weighted average of performance metrics across all
tagged artifacts. Scores were normalized on a 0-100 scale and bucketed into “Below Expectations” (< 60),
“Approaching” (60-80), and “Mastery” (> 80).

5. Dashboard Visualization

o  We built an interactive dashboard using D3.js, embedded in the LMS. Key views included:

= Individual Map: Outcome mastery heatmap for each student.
= Cohort Overview: Aggregate distribution of mastery levels per outcome.

= Artifact Drill-Down: Performance details for each artifact mapped to an outcome.
Data Analysis

e  Mapping Reliability: We randomly sampled 200 artifact-tag pairs and compared automated tags to instructor validations,
computing Cohen’s «k for inter-rater agreement.

e Predictive Validity: We correlated outcome mastery scores with final exam performance using Pearson’s r, testing
significance at o = .01.

o Usage Metrics: LMS logs captured frequency and timing of dashboard accesses, cross-referenced with lecture and
assessment schedules.

e Qualitative Interviews: We conducted semi-structured interviews with all 12 instructors, focusing on perceived
transparency, usability, and instructional changes. Interviews were transcribed and coded thematically following Braun

and Clarke’s (2006) six-phase framework.
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RESULTS
Mapping Reliability

Automated tagging achieved substantial agreement with instructor-validated tags (x = 0.78). Domain-level k ranged from 0.72
(“Ethical Use of Data”) to 0.83 (“Algorithmic Thinking”), indicating consistent performance across cognitive domains. Instructors
reported that most discrepancies involved nuanced Bloom’s levels (e.g., differentiating “Apply” vs. “Analyze”), suggesting areas

for NLP refinement.
Predictive Validity of Mastery Scores

Outcome mastery scores significantly correlated with final exam performance across all primary domains. The strongest correlation
was for Algorithmic Thinking (r = 0.62, p <.001), followed by Data Representation (r = 0.58, p <.001). Even lower correlations
(e.g., Ethical Considerations, r = 0.41, p < .01) indicate that mastery mapping captures meaningful variance in student learning
outcomes. Regression analyses controlling for prior GPA showed mastery scores explained an additional 18% of exam score

variance (AR? = .18, p <.001).
Instructor Dashboard Usage and Perceptions

Dashboard access logs revealed an average of 15 accesses per instructor per week, peaking before midterms and assignment design

meetings. Thematic analysis of interviews yielded three core themes:

1. Transparency and Confidence: Instructors praised the explicit visualization of artifact-to-outcome mappings, noting
greater confidence in alignment decisions and easier identification of misaligned materials.

2. Targeted Remediation: Real-time mastery heatmaps enabled timely interventions—for instance, supplemental workshops
on pointer manipulation after cohort mastery for that outcome fell below 50%. Quiz drop-outs decreased by 12% following
targeted office-hour reminders.

3. Curriculum Iteration: Several instructors refined upcoming lectures and assignments based on dashboard insights. One
teaching assistant reported redesigning a lab exercise on tree traversal after noticing low mastery across both formative and

summative artifacts tagged to that sub-outcome.
Student Engagement Patterns

Students with mastery scores below the Approaching threshold engaged more actively in peer discussions (mean posts = 6.8) than
higher-scoring peers (mean posts = 4.2). Survey data indicated that 78% of low-scoring students used peer forum feedback to

improve subsequent submissions, suggesting that visible outcome feedback fosters self-regulated learning behaviors.
CONCLUSION

This study demonstrates the viability and pedagogical benefit of embedding a data-driven learning outcome mapping framework
within digital education platforms. By combining an ontology for outcome definition, an NLP-augmented tagging pipeline, a

weighted mastery scoring algorithm, and an interactive dashboard, the system provides transparent, real-time alignment insights
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that support targeted instructional decisions, early student interventions, and curriculum refinement. Quantitative evidence confirms
the reliability of automated mapping (x = 0.78) and the predictive validity of mastery scores (r = 0.62 for Algorithmic Thinking),
while qualitative feedback underscores enhanced instructor confidence, targeted remediation, and adaptive pedagogy. Student

engagement analytics further highlight self-regulated learning in response to visible mastery gaps.
Our contributions include:

e A structured outcome ontology for computer science education, adaptable to other disciplines.
e A scalable tagging and mapping pipeline that balances automation with instructor control.

e Empirical evidence linking mapped mastery to performance and pedagogical practices.

Looking forward, integrating advanced deep-learning taggers to reduce instructor validation overhead, expanding the ontology
across diverse domains, and embedding adaptive learning paths triggered by mastery thresholds can further enhance system efficacy.
Longitudinal studies across multiple courses and institutions will be essential to evaluate sustained impacts on retention, progression,

and learning equity.
SCOPE AND LIMITATIONS

While the findings are promising, several limitations constrain generalizability and suggest avenues for future refinement:

1. Domain Specificity
The outcome ontology and tagging model were tailored to a “Data Structures” course in computer science. Adapting the
framework to humanities, social sciences, or professional programs will require re-engineering ontologies and retraining
NLP components to capture discipline-specific terminology and cognitive tasks.

2. Manual Validation Overhead
Although NLP suggestions reduced tagging effort by approximately 60%, instructors still spent an average of 45 seconds
per artifact on validation. Fully automating tag assignment with higher precision—potentially through transformer-based
models or active learning strategies—remains an open research challenge.

3. Single-Institution Context
The study’s context involved one mid-sized university with particular curriculum structures and technology infrastructures.
Multi-institution deployments would reveal additional organizational and technical barriers—such as differences in LMS
configurations, data privacy policies, and faculty readiness—that must be addressed for broader adoption.

4. Short-Term Evaluation
Evaluation spanned a single 15-week semester and focused on immediate performance metrics and instructor perceptions.
Longitudinal research is needed to assess sustained impacts on student retention, progression through multi-course
sequences, and alignment with accreditation outcomes.

5. Data Privacy and Ethics
Collecting fine-grained interaction data raises privacy concerns. Although our study adhered to IRB protocols and
anonymized logs, scaling such systems necessitates robust governance frameworks, transparent data policies, and student

consent mechanisms.
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6. Technical Integration Complexity
Embedding analytics pipelines and dashboards within existing LMS environments required significant development effort.
Future work should explore modular, API-driven architectures and standardized learning analytics interoperability (LTI)

to reduce integration overhead.

Despite these limitations, our framework provides a strong foundation for data-driven outcome mapping in digital education. By
addressing domain adaptation, automation, multi-site replication, and ethical safeguards, subsequent research can enhance both the

technical robustness and pedagogical value of such systems.
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