![]()
Certificate: View Certificate
Published Paper PDF: View PDF
Confirmation Letter: View
DOI: https://doi.org/10.63345/ijre.v14.i12.6
Amal Dasa
Tonmoy Doleyb
Pubalee Sarmahb*
Department of Chemistry, Guwahati College,
Guwahati, 781021, Assam, Indiaa
Department of Chemistry, Royal Global University,
Guwahati-781035, Assam, Indiab
*Correspondence: psarmah2007@gmail.com
ABSTRACT
Computer-Aided Drug Design (CADD) has significantly revolutionized the pharmaceutical industry; expedite the design and development of drugs. This paper reviews a range of methods from computer-aided drug design such as molecular docking, molecular dynamics simulation, and quantitative structure activity relationship (QSAR) modeling. Herein, we additionally discussed the application of artificial intelligence (AI) and machine learning (ML) in CADD, its real-world operationalization, and its predicted future. The identification of a new set of pharmaceuticals was aided through AI powered predictive models which completely shifted the traditional approach that previously relied on extensive testing. In addition, the sharing of knowledge through the collaboration of different fields and the use of freely accessible databases speed up the rate of drug development. Even though there are still concerns on the level of computation and the reliability of the data, the continuous progression of computational chemistry, AI, and bioinformatics in tandem is very promising for the future.
KEYWORDS
Computer-Aided Drug Design, Molecular Docking, AI in Drug Discovery, QSAR, Molecular Dynamics
REFERENCES
- [[1]] Agarwal, U.; Tonk, R.K.; Paliwal, S. Importance of Computer-Aided Drug Design in Modern Pharmaceutical Research. Curr Drug Discov Technol, 2025, 22, doi: 10.2174/0115701638361318241230073123.
- [[1]] Shah, M.; Patel, M.; Shah, M.; Patel, M.; Prajapati, M. Computational transformation in drug discovery: A comprehensive study on molecular docking and quantitative structure activity relationship (QSAR). Intelligent Pharmacy, 2024, 2, 589-595. https://doi.org/10.1016/j.ipha.2024.03.001
- [[1]] Niazi, S.K.; Mariam, Z. Computer-Aided Drug Design and Drug Discovery: A Prospective Analysis. Pharmaceuticals (Basel), 2024, 17, 22, doi: 10.3390/ph17010022.
- [[1]] Yang, W.; Wang, Y.; Han, D.; Tang, W.; Sun, L. Recent advances in application of computer-aided drug design in anti-COVID-19 Virials Drug Discovery. Biomed Pharmacother, 2024, 173, 116423. https://doi.org/10.1016/j.biopha.2024.116423
- [[1]] Wang, K.; Huang, Y.; Wang, Y.; You, Q.; Wang, L. Recent advances from computer-aided drug design to artificial intelligence drug design. RSC Med Chem, 2024, 15, 3978–4000. https://doi.org/10.1039/D4MD00522H
- [[1]] Muhammed, M.T.; Aki-Yalcin, E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem Biol Drug Des, 2019, 93, 12-20. https://doi.org/10.1111/cbdd.13388
- [[1]] Khan, M.K.; Raza, M.; Shahbaz, M.; Hussain, I.; Khan, M.F.; Xie, Z.; Shah, S.S.A.; Tareen, A.K.; Bashir, Z.; Khan, K. The recent advances in the approach of artificial intelligence (AI) towards drug discovery. Front Chem, 2024, 31, 1408740. https://doi.org/10.3389/fchem.2024.1408740
- [[1]] Garg, P.; Singhal, G.; Kulkarni, P.; Horne, D.; Salgia, R.; & Singhal, S.S. Artificial Intelligence–Driven Computational Approaches in the Development of Anticancer Drugs. Cancers, 2024, 16, 3884. https://doi.org/10.1016/j.bbcan.2023.189026
- [[1]] Alrashed, S.; Min-Allah, N. Quantum computing research in medical sciences, Informatics in Medicine Unlocked, 2025, 52, 101606. https://doi.org/10.1016/j.imu.2024.101606
- [[1]] Yu, W.; MacKerell A.D.Jr. Computer-Aided Drug Design Methods. Methods Mol Biol, 2017, 1520, 85-106. https://doi.org/10.1007/978-1-4939-6634-9_5
- [[1]] Chen, Z.; X.; Zhao, X.; Zheng, H.; Wang, Y.; Zhang, L. Journal of Pharmaceutical Analysis, 2024, 9, 101161.
- [[1]] Kamuntavičius, G.; Prat, A.; Paquet, T. et al. Accelerated hit identification with target evaluation, deep learning and automated labs: prospective validation in IRAK1. J Cheminform , 2024, 127. https://doi.org/10.1186/s13321-024-00914-0
- [[1]] Venkataraman M.; Rao G.C.; Madavareddi, J.K.; Maddi, S.R. Leveraging machine learning models in evaluating ADMET properties for drug discovery and development. ADMET DMPK, 2025, 13, 2772. https://doi.org/10.5599/admet.2772
- [[1]] Wang, K.; Huang, Y.; Wang, Y.; You, O.; Wang, L. RSC Med. Chem., 2024, 15, 3978
- [[1]] Agu, P.C.; Afiukwa, C.A.; Orji, O.U. et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep, 2023, 13398. https://doi.org/10.1038/s41598-023-40160-2
- [[1]] Shihoya, W.; Iwama, A.; Sano, F.K.; Nureki, O. Cryo-EM advances in GPCR structure determination. The Journal of Biochemistry, 2024, 176, 1–10. https://doi.org/10.1093/jb/mvae029
- [[1]] Sim, J.; Kim, D.; Kim, B.; Choi, J.; Lee, J. Current Opinion in Structural Biology. 2025, 92, 103020.
- [[1]] Krejengan, K. Molecular Dynamics Simulation to Study Protein Conformation and Ligand Interaction, 2023, 107–127. https://doi.org/10.1007/978-981-99-2079-2_6
- [[1]] Suh, D.; Feng, S.; Lee, H.Y.; Zhang, H.; Park, S.J.; Kim, S.; Lee, J.; Choi, S.; & Im, W. CHARMM‐GUI Enhanced Sampler for various collective variables and enhanced sampling methods. Protein Science, 2022, 31. https://doi.org/10.1002/pro.4446
- [[1]] Bansal, N.; Wang, Y.; & Sciabola, S. Machine Learning Methods as a Cost-Effective Alternative to Physics-Based Binding Free Energy Calculations. Molecules, 2024, 29, 830. https://doi.org/10.3390/molecules29040830
- [[1]] Mohamed, M.A.; Alanazi, A.F.; Alanazi, W.A.; Elsaman, T.; Mohamed, M.S.; Eltayib, E.M. Repurposing of eluxadoline as a SARS-CoV-2 main protease inhibitor: E-Pharmacophore based virtual screening, molecular docking, MM-GBSA calculations, and molecular dynamics simulations studies. J Appl Pharm Sci. 2025, 15, 102–110. https://dx.doi.org/10.7324/JAPS.2024.204792
- [[1]] Niazi, S.K. Quantum Mechanics in Drug Discovery: A Comprehensive Review of Methods, Applications, and Future Directions. Int J Mol Sci, 2025, 26, 6325. https://doi.org/10.3390/ijms26136325
- [[1]] Abdelkader, G.A.; Kim, J.D. Current Drug Targets, 2024, 25, 1041-1065. https://doi.org/10.2174/0113894501330963240905083020
- [[1]] Bakare, O.S.; Oluwabukola, O. et al. Advances in Computational Methods for Drug Design: A Revolution in Pharmaceutical Development. Journal of Angiotherapy, 2024, 8,1-10.
- [[1]] Shahin, R.; Jaafreh, S.; Azzam, Y. Tracking protein kinase targeting advances: integrating QSAR into machine learning for kinase-targeted drug discovery. Future Sci OA, 2025, 11, 2483631. https://doi.org/10.1080/20565623.2025.2483631
- [[1]] Chen, W.; Liu, W.; Zhang, S.; Chen, S. Molecular Therapy – Nucleic Acids, 2023, 31, 691-702. https://doi.org/10.1016/j.omtn.2023.02.019
- [[1]] Zeng, X.; Wang, F.; Luo, Y.; Kang, S.G.; Tang, J.; Lightstone, F.C.; Fang, E.F.; Cornell, W.; Nussinov, R.; Cheng, F. Deep generative molecular design reshapes drug discovery. Cell Rep Med, 2022, 3, 100794. https://doi.org/10.1016/j.xcrm.2022.100794
- [[1]] Li, X.; Fourches, D. Inductive transfer learning for molecular activity prediction: Next-Gen QSAR Models with MolPMoFiT. J Cheminform, 2020, 12, 17, https://doi.org/10.1186/s13321-020-00430-x
- [[1]] Das, U. Generative AI for drug discovery and protein design: the next frontier in AI-driven molecular science Medicine in Drug Discovery, 2025, 27, 100213. https://doi.org/10.1016/j.medidd.2025.100213
- [[1]] Serrano, D.R.; Luciano, F.C.; Anaya, B.J.; Ongoren, B.; Kara, A.; Molina, G.; Ramirez, B.I.; Sánchez-Guirales, S.A.; Simon, J.A.; Tomietto, G.; Rapti, C.; Ruiz, H.K.; Rawat, S.; Kumar, D.; Lalatsa, A. Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics, 2024, 16, 1328. https://doi.org/10.3390/pharmaceutics16101328
- [[1]] Chaudhary, M.; & Tyagi, K. A review on molecular docking and its application. International Journal of Advanced Research, 2024, https://doi.org/10.21474/ijar01/18505
- [[1]] Agu, P.C.; Afiukwa, C.A.; Orji, O.U.; Ezeh, E.M.; Ofoke, I.H.; Ogbu, C.O.; Ugwuja, E.I.; Aja, P.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep, 2023, 13, 13398. doi: 10.1038/s41598-023-40160-2.
- [[1]] Oliveira, T.A.; d. Silva, M.P.; Habib, E.; d. Silva, A.M.; & Taranto, A.G. Virtual Screening Algorithms in Drug Discovery: Review Focused on Machine and Deep Learning Methods. Drugs and Drug Candidates, 2023, 2, 311-334. https://doi.org/10.3390/ddc2020017
- [[1]] Xia, S.; Chen, E.; Zhang, Y. Integrated Molecular Modeling and Machine Learning for Drug Design. J Chem Theory Comput, 2023, 19, 7478-7495. doi: 10.1021/acs.jctc.3c00814.
- [[1]] Mohammadi, S.; Narimani, Z.; Ashouri, M.; Firouzi, R.; Karimi-Jafari, M.H. Ensemble learning from ensemble docking: revisiting the optimum ensemble size problem. Sci Re. 2022, 12, 410. https://doi.org/10.1038/s41598-021-04448-5
- [[1]] Syahdi, R.R.; Jasial, S.; Maeda, I.; Miyao, T. Bridging Structure- and Ligand-Based Virtual Screening through Fragmented Interaction Fingerprint. ACS Omega, 2024, 9, 38957-38969. doi: 10.1021/acsomega.4c05433.
- [[1]] Manan, A.; Baek, E.; Ilyas, S.; & Lee, D. Digital Alchemy: The Rise of Machine and Deep Learning in Small-Molecule Drug Discovery. International Journal of Molecular Sciences, 2025, 26, 6807. https://doi.org/10.3390/ijms26146807
- [[1]] Zhou, G.; Rusnac, D.V.; Park, H.; et al. An artificial intelligence accelerated virtual screening platform for drug discovery. Nat Commun, 2024, 15. https://doi.org/10.1038/s41467-024-52061-7
- [[1]] Zong, K.; Wei, C.; Li, W.; Ruan, J.; Zhang, S.; Li, J.; Liu, X.; Zhao, X.; Cao, R.; Yan, H.; Li, X. Identification of novel SARS-CoV-2 3CLpro inhibitors by molecular docking, in vitro assays, molecular dynamics simulations and DFT analyses. Front Pharmacol. 2024, 15, 1494953. doi: 10.3389/fphar.2024.1494953.
- [[1]] Gioia, D.; Bertazzo, M.; Recanatini, M.; Masetti, M.; & Cavalli, A. Dynamic Docking: A Paradigm Shift in Computational Drug Discovery. Molecules, 2017, 22, 2029. https://doi.org/10.3390/molecules22112029
- [[1]] Ferreira, F.J.N.; Carneiro, A.S. ACS Omega, 2025, 23, 23889–23903
- [[1]] Bindu, Ch.; Hima, et al. “Revolutionizing Pharmaceutical Sciences: A Comprehensive Review of Artificial Intelligence’s Impact on Drug Discovery and Development. Genomics-Driven Drug Discovery Through Pharmacogenomics, 2025, edited by Parikesit, A.A, et al., IGI Global, pp. 217-246.
- [[1]] Vora, L.K.; Gholap, A.D.; Jetha, K.; Thakur, R.R.S.; Solanki, H.K.; Chavda, V.P. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics, 2023, 10, 1916. doi: 10.3390/pharmaceutics15071916.
- [[1]] Shi, H.; Wang, Z.; Zhou, L.; Xu, Z.; Xie, L.; Kong, R.; and Chang, S. Status and Prospects of Research on Deep Learning-based De Novo Generation of Drug Molecules. Current Computer – Aided Drug Design, 2025, 21, 257-269 https://doi.org/10.2174/0115734099287389240126072433
- [[1]] Kao, P.Y.; Yang, Y.C.; Chiang, W.Y.; Hsiao, J.Y.; Cao, Y.; Aliper, A.; Ren, F.; Aspuru-Guzik, A.; Zhavoronkov, A.; Hsieh, M.H.; Lin, Y.C. Exploring the Advantages of Quantum Generative Adversarial Networks in Generative Chemistry. J Chem Inf Model, 2023, 63, 3307-3318. doi: 10.1021/acs.jcim.3c00562.
- [[1]] Gaudreault, F.; Sulea, T.; Corbeil, C.R. AI-augmented physics-based docking for antibody-antigen complex prediction. Bioinformatics, 2025, 41, btaf129. https://doi.org/10.1093/bioinformatics/btaf129
- [[1]] Son, A.; Park, J.; Kim, W.; Yoon, Y.; Lee, S.; Park, Y.; & Kim, H. Revolutionizing Molecular Design for Innovative Therapeutic Applications through Artificial Intelligence. Molecules, 2024, 29, 4626. https://doi.org/10.3390/molecules29194626
- [[1]] Baduge, S.K.; Thilakarathna, S.; Perera, J.S.; Arashpour, M.; Sharafi, P.; Teodosio, B.; Shringi, A.; Mendis, P. Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 2022, 141, 104440.
- [[1]] Sarker, I.H. AI-Based Modeling: Techniques, Applications and Research Issues Towards Automation, Intelligent and Smart Systems. SN Comput. Sci 2022, 3, 158. https://doi.org/10.1007/s42979-022-01043-x
- [[1]] Jia, X.; Teutonico, D.; Dhakal, S.; Psarellis, Y, M.; Abos, A.; Zhu, H.; Mavroudis, P.D.; Pillai, N. Application of Machine Learning and Mechanistic Modeling to Predict Intravenous Pharmacokinetic Profiles in Humans. J Med Chem, 2025, 68, 7737. doi: 10.1021/acs.jmedchem.5c00340.
- [[1]] Aghajanpour, S.; Amiriara, H.; Esfandyari-Manesh, M.; Ebrahimnejad, P.; Jeelani, H.; Henschel, A.; Singh, H.; Dinarvand, R.; Hassan, S. Utilizing machine learning for predicting drug release from polymeric drug delivery systems. Comput Biol Med, 2025, 188, 109756. doi: 10.1016/j.compbiomed.2025.109756.
- [[1]] Huang, Z.; Denti, P.; Mistry, H.; Kloprogge, F. Machine Learning and Artificial Intelligence in PK-PD Modeling: Fad, Friend, or Foe? Clin Pharmacol Ther, 2024 ,115, 652-654. doi: 10.1002/cpt.3165.
- [[1]] Saranraj, K.; Kiran, P.U. Drug repurposing. Clinical practices and regulatory pathways. Perspect Clin Res, 2025 ,16, 61-68. doi: 10.4103/picr.picr_70_24.
- [[1]] Rao, N.; Poojari, T.; Poojary, C.; Sande, R.; Sawant, S. Drug Repurposing: a Shortcut to New Biological Entities. Pharm Chem J. 2022, 56, 1203-1214. doi:10.1007/s11094-022-02778-w. Epub 2022 Dec 7.
- [[1]] Herráiz-Gil, S.; Nygren-Jiménez, E.; Acosta-Alonso, D.N.; León, C.; Guerrero-Aspizua, S. Artificial Intelligence-Based Methods for Drug Repurposing and Development in Cancer. Applied Sciences, 2025, 15, 2798. https://doi.org/10.3390/app15052798
- [[1]] Hao, L.; Lei, Shi.; Berkenpas, J.W.; Dao, F.Y.; Zulfiqar, H.; Ding, H.; Zhang, Y.; Yang, L.; Cao, R. Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design. Briefings in Bioinformatics, 2021, 22, bbab320, https://doi.org/10.1093/bib/bbab320
- [[1]] Hasnain, A.; Shabbir, M.A.; Ullah, N.; Kashif, A.; Shakeel, A. AI-driven in silico discovery, design, and evaluation of novel antiviral candidates targeting Marburg virus nucleoprotein for advanced therapeutic development. Letters in Drug Design & Discovery 2025, 22, 100030. https://doi.org/10.1016/j.lddd.2025.100030.
- [[1]] Singh, M.; Shanmukha, S.; Eldesouki, R.E.; Harraz, M.M. FDA-approved drug repurposing screen identifies inhibitors of SARS-CoV-2 pseudovirus entry. Frontiers in Pharmacology 2025, 16, 1537912. https://doi.org/10.3389/fphar.2025.1537912.
- [[1]] Sur, S.; Nimesh, H. Challenges and limitations of computer-aided drug design. Advances in Pharmacology 2025, 103, 415-428. doi: 10.1016/bs.apha.2025.02.002.
- [[1]] Mihai, D.P.; Nitulescu, G.M. Computer-Aided Drug design and drug discovery. Pharmaceuticals 2025, 18, 436. https://doi.org/10.3390/ph18030436.
- [[1]] Naveed, S.; Husnain, M.; Alsubaie, N. HybridDLDR: A hybrid deep learning-based drug resistance prediction system of Glioblastoma (GBM) using molecular descriptors and gene expression data. Computer Methods and Programs in Biomedicine 2025, 270, 108913. https://doi.org/10.1016/j.cmpb.2025.108913.
- [[1]] Ahuja, N.D. Cloud-Powered Drug Discovery and Personalized Medicine: Revolutionizing healthcare through advanced technology. World Journal of Advanced Engineering Technology and Sciences 2025, 16, 098–110. https://doi.org/10.30574/wjaets.2025.16.1.1050.
- [[1]] Memon, Q.A.; Ahmad, M.A.; Pecht, M. Quantum Computing: Navigating the future of computation, challenges, and technological breakthroughs. Quantum Reports 2024, 6, 627–663. https://doi.org/10.3390/quantum6040039.
[[1]] Chow, J.C.L. Quantum computing in medicine. Medical Sciences 2024, 12, 67. https://doi.org/10.3390/medsci12040067.